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Multi-Cumulant and Non-Inferior Strategies for Multi-Player Pursuit-Evasion

Khanh D. Pham Seth Lacy Lawrence Robertson
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Air Force Research Laboratory Air Force Research Laboratory Air Force Research Laboratory
Kirtland AFB, NM 87117 Kirtland AFB, NM 87117 Kirtland AFB, NM 87117

Abstract— The paper presents an extension of cost-cumulant
control theory over a finite horizon for a class of two-team
pursuit-evasion games wherein the evolution of the states of
the game in response to decision strategies selected by pursuit
and evasion teams from non-inferior sets of admissible controls
is described by stochastic linear differential equation and
integral quadratic cost. Since the sum of the aggregate cost
functions of two teams is equal to zero, the amount that one
team gains is equal to the amount of the other team loses.
Both cooperation within each team and competition between
the teams presumably exist. A direct dynamic programming
approach for the Mayer optimization problem is used to solve
for a multi-cumulant and non-inferior based solution when the
members in each team measure the states and minimize the first
k cumulants of the standard integral-quadratic cost associated
with this special class of multi-player pursuit-evasion games.

I. INTRODUCTION

Since the 1950s, the work of Issacs [2] in deterministic
pursuit-evasion game of a single pursuer and a single evader
with perfect information and common knowledge has been
greatly extended to pursuit-evasion with multiple pursuers
and multiple evaders. Recent developments [6], [4] and
references therein respectively treat probabilistic discrete-
time as well deterministic continuous-time problems. To the
best knowledge of the authors, there hasn’t yet been any
work done for multi-player pursuit-evasion differential game
problems wherein the members in each team have common
interests to statistically improve their payoffs at the expenses
of the other members from the rival team. In particular,
this paper is proposing a novel and innovative paradigm for
non-inferior strategy selection using performance-measure
statistics to provide not only a mechanism in which the
common benefits of all members in each team can be
optimized, but also an analytical tool which is used to
characterize a complete statistical description of the global
performance of the multi-player pursuit-evasion. The present
work has extensive applications in multi-missile guidance
and interception, military tactics, and strategic decision-
making.

The paper is structured as follows. The necessary back-
ground in generating higher-order performance-measure
statistics of the multi-player pursuit-evasion game is pre-
sented in Section II. These performance-measure statistics
are then used to formulate the cost-cumulant control problem
for the subject game. A precise mathematical formulation
along with several problem statements of the multi-player

This work was sponsored in part by the Air Force Office of Scientific
Research, USAF, under LRI 00VS17COR.

pursuit-evasion problem is summarized in Section III. Fi-
nally, a multi-cumulant, non-inferior and saddle-point solu-
tion and some remarks are presented in Sections IV and V.

II. PROBLEM FORMULATION

For analytical tractability, let’s consider a special class
of differential games whose dynamical systems of pursuers
and evaders are linear and the cost functions are quadratic
functions of the states and controls. For instance, a pursuit-
evasion differential game with a team P with mP pursuers,
identified as m1, . . . ,mP , and a team E with mE evaders,
identified as m1, . . . ,mE , in an open subset of Hilbert space
S . Denote by xX

i (t) , xX
i (t, ωX

i ) : [t0, tf ] × ΩX
i 7→ RnX

i

belonging to the Hilbert space L2
FX

it
(ΩX

i ; C([t0, tf ];RnX
i ))

of RnX
i -valued, square integrable processes on [t0, tf ] that

are adapted to the σ-field FX
it generated by wX

i (t) with
E

{∫ tf

t0
(xX

i )T (τ)xX
i (τ)dτ

}
< ∞ the state variables for the

members i = 1, . . . , mX in each team X = P, E whose
corresponding physical positions in S are described by

dxX
i (t) = (AX

i (t)xX
i (t) + BX

ui(t)u
X
i (t))dt

+ GX
i (t)dwX

i (t), xX
i (t0) = xX

i0 (1)

where the initial states xX
i0 are known. The input noises

wX
i (t) , wX

i (t, ωX
i ) : [t0, tf ] × ΩX

i 7→ RpX
i are the

pX
i -dimensional stationary Wiener process defined with
{FX

it }t≥0 being its natural filtration on complete filtered
probability spaces (ΩX

i ,FX
i , {FX

it }t≥0,PX
i ) over [t0, tf ]

with the correlations of increments

E
{
[wX

i (τ)− wX
i (ξ)][wX

i (τ)− wX
i (ξ)]T

}
= WX

i |τ − ξ|,
and continuous-time coefficients AX

i ∈ C([t0, tf ];RnX
i ×nX

i ),
BX

ui ∈ C([t0, tf ];RnX
i ×mX

i ), and GX
i ∈ C([t0, tf ];RnX

i ×pX
i ).

In (1), uX
i ∈ UX

i are the control vectors for the members
in each team where UX

i ∈ L2
FX

it
(ΩX

i ; C([t0, tf ];RmX
i ))

are the sets of corresponding admissible control strate-
gies in Hilbert space of RmX

i -valued, square integrable
processes on [t0, tf ] that are adapted to the σ-field FX

it

generated by wX
i (t). For simplicity of notation, let xX ,[

(xX
1 )T , . . . , (xX

mX
)T

]T
, uX ,

[
(uX

1 )T , . . . , (uX
mX

)T
]T

,
AX , diag(AX

1 , . . . , AX
mX

), BX
u , diag(BX

u1, . . . , B
X
umX

),
and GX , diag(GX

1 , . . . , GX
mX

). Then, the dynamic equa-
tions of multiple pursuers and evaders can be rewritten in a
compact form as

dxX(t) = (AX(t)xX(t) + BX
u (t)uX(t))dt

+ GX(t)dwX(t) , xX(t0) = xX
0 (2)



and the aggregate dynamic equation of the multi-player
pursuit-evasion differential game is then given by

dx(t) = (A(t)x(t) + BP (t)uP (t) + BE(t)uE(t))dt

+ G(t)dw(t) , x(t0) = x0 (3)

where A , diag(AP , AE), BP ,
[
(BP

u )T , 0
]T

,
BE ,

[
0, (BE

u )T
]T , G , diag(GP , GE), x ,[

(xP )T , (xE)T
]T , dw ,

[
(dwP )T , (dwE)T

]T , and W ,
diag(WP

1 , . . . , WP
mP

,WE
1 , . . . , WE

mE
). Since not all evaders

will be captured at the same time, the terminal time of the
game, tf should be defined based on the capture of all.

Definition 1: Terminal Time.
For any evaders {j}mE

j=1, assume that there exists a pursuer
{i}mP

i=1 engaged with at least one evader. The capture time
tj of evader j is given by

tj , inf
{
t ≥ 0,∃i : d(xP

i (t), xE
j (t)) ≤ ε, ε ∈ R+

}
. (4)

Then, the terminal time tf of the pursuit-evasion game is

tf , max
1≤j≤mE

{tj}. (5)

Note that the terminal time could be infinity due to the
inability of pursuers to capture some evaders whose physical
and functional characteristics are superior to team P . Let
UP , ×mP

i=1UP
i , UE , ×mE

j=1UE
j , X , ×mP

i=1RnP
i ×

×mE
j=1R

nE
j ⊂ S . Then, associated with each (uP , uE) ∈

UP × UE is a finite-horizon integral quadratic form (IQF)
cost JX

i : [t0, tf ]×X ×UP ×UE 7→ R+∪{0} for which the
member i in team X , for X = P, E attempts to optimize

JX
i (t0, x0; uP , uE) = xT (tf )QX

ifx(tf )

+
∫ tf

t0

[
xT(τ)QX

i (τ)x(τ) +
mP∑

j=1

(uP
j )T (τ)RXP

ij (τ)uP
j (τ)

+
mE∑

j=1

(uE
j )T (τ)RXE

ij (τ)uE
j (τ)

]
dτ , (6)

subject to the dynamics of the differential game (3) where
QX

if ∈ R(
PmP

i=1 nP
i +
PmE

j=1 nE
j )×(

PmP
i=1 nP

i +
PmE

j=1 nE
j ), QX

i ∈
C([t0, tf ];R(

PmP
i=1 nP

i +
PmE

j=1 nE
j )×(

PmP
i=1 nP

i +
PmE

j=1 nE
j )), cross-

coupling control inputs RXP
ij ∈ C([t0, tf ];RmP

j ×mP
j ) and

RXE
ij ∈ C([t0, tf ];RmE

j ×mE
j ) are symmetric and positive

semidefinite with RXP
ij (t) and RXE

ij (t) invertible.
Within a cooperative team X , it is of interest a negotiated

solution among all members. A negotiation is done via
mutual and enforceable agreements among team members.
This solution is selected from the set of strategy mX -tuples
defined below.

Definition 2: Non-inferior Strategies.
The strategy mX -tuple vX = (vX

1 , . . . , vX
mX

) belongs
to the noninferior set if, for any other strategy mX -
tuple uX : {JX

i (t0, x0; uX , ·) ≤ JX
i (t0, x0; vX , ·)} only

if {JX
i (t0, x0; uX , ·) = JX

i (t0, x0; vX , ·)}, for all i =
1, . . . ,mX .
Since the IQF costs (6) are convex functions on a convex
set UP × UE with convex constraints (3), the problem of

solving for a set of non-inferior strategies within each team
X with a vector cost criterion is equivalent to the problem
of solving an mX − 1 parameter family of optimal control
problems with scalar cost criteria [5], [7]. Each non-inferior
strategy mX -tuple therefore minimizes the scalar criterion

JX(t0, x0; uP , uE ; ξX) =
mX∑

i=1

ξiJ
X
i (t0, x0; uP , uE) , (7)

where the set of team strategy profiles ξX ∈ WX is defined
as follows

WX ,
{

ξX ∈ RmX :
mX∑

i=1

ξX
i = 1; 0 ≤ ξX

i ≤ 1

}
. (8)

Let QX
f ,

∑mX

i=1 ξX
i QX

if , QX ,
∑mX

i=1 ξX
i QX

i , RXP
j ,∑mX

i=1 ξX
i RXP

ij , and RXE
j ,

∑mX

i=1 ξX
i RXE

ij . Then the ag-
gregate cost (7) can be written explicitly as follows

JX(t0, x0; uP , uE ; ξX) = xT (tf )QX
f x(tf )

+
∫ tf

t0

[
xT (τ)QX(τ)x(τ) +

mP∑

j=1

(uP
j )T (τ)RXP

j (τ)uP
j (τ)

+
mE∑

j=1

(uE
j )T (τ)RXE

j (τ)uE
j (τ)

]
dτ . (9)

For a compact notation, let RXP , diag(RXP
1 , . . . , RXP

mX
),

and RXE , diag(RXE
1 , . . . , RXE

mX
). The negotiating cost (9)

associated with team X then becomes

JX(t0, x0; uP , uE ; ξX) = xT (tf )QX
f x(tf )

+
∫ tf

t0

[
xT (τ)QX(τ)x(τ) + (uP )T (τ)RXP (τ)uP (τ)

+ (uE)T (τ)RXE(τ)uE(τ)
]
dτ. (10)

In fact, the game is zero-sum only if RPP = −REP , RP ,
REE = −RPE , RE , QP

f = −QE
f , Qf , and QP =

−QE , Q. Substituting these results into (10), one obtains
the zero-sum differential game cost

J(t0, x0; uP , uE) = xT (tf )Qfx(tf )

+
∫ tf

t0

[
xT (τ)Q(τ)x(τ) + (uP )T (τ)RP (τ)uP (τ)

− (uE)T (τ)RE(τ)uE(τ)
]
dτ. (11)

In view of the linear system (3) and the quadratic
performance-measure (11), it is reasonable to assume that
both teams P and E choose their control actions from classes
of linear memoryless-feedback strategies, γP : [t0, tf ] ×
L2
Ft

(Ω; C([t0, tf ];X )) 7→ L2
Ft

(Ω; C([t0, tf ];UP )) and γE :
[t0, tf ]× L2

Ft
(Ω; C([t0, tf ];X )) 7→ L2

Ft
(Ω; C([t0, tf ];UE))

uP (t) = γP (t, x(t)) = KP (t)x(t) , (12)

uE(t) = γE(t, x(t)) = KE(t)x(t) , (13)

where KP ∈ C([t0, tf ];R
PmP

i=1 mP
i ×(

PmP
i=1 nP

i +
PmE

j=1 nE
j )) and

KE ∈ C([t0, tf ];R
PmE

j=1 mE
j ×(

PmP
i=1 nP

i +
PmE

j=1 nE
j )) are admis-

sible gains for teams P and E. For the given initial condition



(t0, x0) ∈ [t0, tf ]× S and control strategies subject to (12)-
(13), the dynamics of the game (3) is then given by

dx(t) =
[
A(t) + BP (t)KP (t) + BE(t)KE(t)

]
x(t)dt

+ G(t)dw(t) , x(t0) = x0 , (14)

and its IQF cost also follows

J(t0, x0; KP ,KE) = xT (tf )Qfx(tf )+
∫ tf

t0

xT (τ)
[
Q(τ)

+KPT (τ)RP (τ)KP (τ)−KET (τ)RE(τ)KE(τ)
]
x(τ)dτ.

(15)

It is now necessary to develop a procedure for generating
cost cumulants for the zero-sum stochastic differential game
by adapting the parametric method in [3] to characterize
a moment-generating function. These cost cumulants are
then used to form a performance index in the cost-cumulant
control optimization. This approach begins with a replace-
ment of the initial condition (t0, x0) by any arbitrary pair
(α, xα). Thus, for the given admissible feedback gains KP

and KE , the cost functional (15) is seen as the “cost-to-go”,
J (α, xα). The moment-generating function of the vector-
valued random process (14) is given by

ϕ (α, xα; θ) , E {exp (θJ (α, xα))} , (16)

where the scalar θ ∈ R+ is a small parameter. Thus, the
cumulant-generating function immediately follows

ψ (α, xα; θ) , ln {ϕ (α, xα; θ)} , (17)

in which ln{·} denotes the natural logarithmic transformation
of an enclosed entity.

Theorem 1: Cost Cumulant-Generating Function.
For all α ∈ [t0, tf ] and the small parameter θ ∈ R+, define

ϕ (α, xα; θ) , % (α, θ) exp
(
xT

αΥ(α, θ)xα

)
, (18)

υ (α, θ) , ln{% (α, θ)} . (19)

Then the cost cumulant-generating function is expressed as

ψ (α, xα; θ) = xT
αΥ(α, θ)xα + υ (α, θ) , (20)

in which the scalar solution υ (α, θ) solves the backward-in-
time differential equation with υ (tf , θ) = 0

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α) WGT (α)

}
, (21)

whereas Υ(α, θ) satisfies the backward-in-time differential
equation together with Υ(tf , θ) = θQf

d

dα
Υ(α, θ) =

− [A(α) + BP(α)KP(α) + BE(α)KE(α)]TΥ(α, θ)

−Υ(α, θ)[A(α) + BP (α)KP (α) + BE(α)KE(α)]

− 2Υ(α, θ)G(α)WGT (α)Υ(α, θ)− θ
[
Q(α)

+ KPT(α)RP(α)KP(α)−KET(α)RE(α)KE(α)
]
. (22)

Meanwhile, %(α, θ) satisfies the backward-in-time differen-
tial equation with % (tf , θ) = 1

d

dα
% (α, θ) = −% (α, θ) Tr

{
Υ(α, θ)G (α) WGT (α)

}
.

(23)
Proof. For any θ given, let $ (α, xα; θ) , exp (θJ (α, xα))
then the moment-generating function becomes

ϕ (α, xα; θ) = E {$ (α, xα; θ)} ,

with the time derivative of

d

dα
ϕ (α, xα; θ) = −ϕ (α, xα; θ) θxT

α

[
Q(α)

+ KPT (α)RP (α)KP (α)−KET (α)RE(α)KE(α)
]
xα .

Using the standard Ito’s formula, one get

dϕ (α, xα; θ) = E {d$ (α, xα; θ)} ,

= E
{

$α (α, xα; θ) dα + $xα (α, xα; θ) dxα

+
1
2

Tr
{
$xαxα(α, xα; θ)G(α)WGT (α)

}
dα

}
,

= ϕα (α, xα; θ) dα

+ϕxα(α, xα; θ)
[
A(α)+BP(α)KP(α)+BE(α)KE(α)

]
xαdα

+
1
2

Tr
{
ϕxαxα (α, xα; θ)G (α)WGT (α)

}
dα ,

which with the definition (18) leads to

− ϕ (α, xα; θ) θxT
α

[
Q(α) + KPT (α)RP (α)KP (α)

−KET (α)RE(α)KE(α)
]
xα =

d
dα% (α, θ)
% (α, θ)

ϕ (α, xa; θ)

+ ϕ (α, xα; θ)xT
α

d

dα
Υ(α, θ)xα + ϕ (α, xα; θ)

{
xT

α

[
A(α)

+ BP (α)KP (α) + BE(α)KE(α)
]T Υ(α, θ)xα

+xT
αΥa(α, θ)

[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]
xα

}

+ ϕ (α, xα; θ)
{

2xT
αΥ(α, θ)G(α)WGT (α)Υ(α, θ)xα

+ Tr
{
Υ(α, θ)G(α)WGT (α)

} }
.

To have constant and quadratic terms being independent of
xα, it requires that

d

dα
Υ(α, θ)

= −[A(α) + BP (α)KP (α) + BE(α)KE(α)]T Υ(α, θ)

−Υ(α, θ)[A(α) + BP (α)KP (α) + BE(α)KE(α)]

− 2Υ(α, θ)G (α)WGT (α)Υ(α, θ)

−θ
[
Q(α) + KPT(α)RP(α)KP(α)−KET(α)RE(α)KE(α)

]
,

d

dα
% (α, θ) = −% (α, θ) Tr

{
Υ(α, θ)G (α)WGT (α)

}
,



with the terminal conditions Υ(tf , θ) = θQf and % (tf , θ) =
1. Finally, the remaining backward-in-time differential equa-
tion satisfied by υ (α, θ) is given by

d

dα
υ (α, θ) = −Tr

{
Υ(α, θ)G (α)WGT (α)

}
, υ (tf , θ) = 0

which completes the proof.
The MacLaurin expansion of the cumulant-generating

function is used to generate cost cumulants for the multi-
player pursuit-evasion game

ψ (α, xα; θ) =
∞∑

i=1

κi(α, xα)
θi

i!
=

∞∑

i=1

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

θi

i!
(24)

in which κi(α, xα)’s are the cost cumulants. Note that the
series coefficients can be computed by using (20)

∂(i)

∂θ(i)
ψ(α, xα; θ)

∣∣∣∣
θ=0

= xT
α

∂(i)

∂θ(i)
Υ(α, θ)

∣∣∣∣
θ=0

xα

+
∂(i)

∂θ(i)
υ(α, θ)

∣∣∣∣
θ=0

. (25)

Cost cumulants for the stochastic differential game problem
can be obtained using (24) and (25) as follows

κi(α, xα) = xT
α

∂(i)

∂θ(i)
Υ(α, θ)

∣∣∣∣
θ=0

xα +
∂(i)

∂θ(i)
υ(α, θ)

∣∣∣∣
θ=0

,

(26)

for any finite 1 ≤ i < ∞. For notational convenience, the
following definitions are needed in place

H(α, i) , ∂(i)

∂θ(i)
Υ(α, θ)

∣∣∣∣
θ=0

; D(α, i) , ∂(i)

∂θ(i)
υ(α, θ)

∣∣∣∣
θ=0

.

(27)

Theorem 2: Cumulants in Multi-Player Pursuit-Evasion.
Suppose the multi-player pursuit-evasion game is character-
ized by (14)-(15) where (A,BP ) and (A,BE) are uniformly
stabilizable. Two teams presumably choose their control
strategies (uP (t), uE(t)) = (KP (t)x(t),KE(t)x(t)). For
given k ∈ Z+, ξP ∈ WP , and ξE ∈ WE , the kth cost
cumulant in multi-player pursuit-evasion is computed by

κk(t0, x0; ξP, ξE ; KP,KE) = xT
0H(t0, k)x0+D(t0, k) (28)

in which the cumulant-building variables {H(α, i)}k
i=1 and

{D(α, i)}k
i=1 evaluated at α = t0 satisfy the following

differential equations (with the dependence of H(α, i) and
D(α, i) upon the admissible gains KP and KE suppressed)

d

dα
H(α, 1) =

− [
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
H(α, 1)

−H(α, 1)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]−Q(α)

−KPT (α)RP (α)KP (α) + KET (α)RE(α)KE(α) , (29)

and, for 2 ≤ i ≤ k

d

dα
H(α, i) =

− [
A(α) + BP (α)KP (α) + BE(α)KE(α)

]T
H(α, i)

−H(α, i)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]

−
i−1∑

j=1

2i!
j!(i− j)!

H(α, j)G(α)WGT (α)H(α, i− j), (30)

together with 1 ≤ i ≤ k

d

dα
D(α, i) = −Tr

{
H(α, i)G(α)WGT (α)

}
, (31)

where the terminal conditions H(tf , 1) = Qf , H(tf , i) = 0
for 2 ≤ i ≤ k and D(tf , i) = 0 for 1 ≤ i ≤ k.
Proof. The cost cumulant expression in (28) is readily jus-
tified by using the result (26) and the definitions (27). What
remains is to show that the solutions H(α, i) and D(α, i) for
1 ≤ i ≤ k indeed satisfy the equations (29)-(31). Note that
the equations (29)-(31) satisfied by the solutions H(α, i) and
D(α, i) can be obtained by repeatedly taking the derivative
with respect to θ of the equations (21)-(22) together with the
assumption A(α) + BP (α)KP (α) + BE(α)KE(α), stable
for all α ∈ [t0, tf ].

III. PROBLEM STATEMENTS

In the subsequent development, the subset of symmetric
matrices of the vector space of all n× n matrices with real
elements is denoted by Sn where n ,

∑mP

i=1 nP
i +

∑mE

j=1 nE
j .

Now let k-tuple variables H and D be defined as follows
H(·) , (H1(·), . . . ,Hk(·)) and D(·) , (D1(·), . . . ,Dk(·))
for each element Hi ∈ C1([t0, tf ];Sn) of H and Di ∈
C1([t0, tf ];R) of D having the representations Hi(·) =
H(·, i) and Di(·) = D(·, i) with the right members satisfying
the dynamic equations (29)-(31) on the horizon [t0, tf ]. For
notational tractability, the following mappings are introduced

Fi : [t0, tf ]× (Sn)k × RmP×n × RmE×n 7→ Sn

Gi : [t0, tf ]× (Sn)k 7→ R

where mP ,
∑mP

i=1 mP
i , mE ,

∑mE

j=1 mE
j , and the actions

are given by

F1(α,H,KP , KE) ,
− [

A(α) + BP (α)KP (α) + BE(α)KE(α)
]T H1(α)

−H1(α)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]

−Q(α)−KPT (α)RP (α)KP (α)+KET (α)RE(α)KE(α),

Fi(α,H,KP ,KE) ,
− [

A(α) + BP (α)KP (α) + BE(α)KE(α)
]T Hi(α)

−Hi(α)
[
A(α) + BP (α)KP (α) + BE(α)KE(α)

]

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(α)G(α)WGT (α)Hi−j(α), 2 ≤ i ≤ k,

Gi(α,H) , −Tr
{Hi(α)G(α)WGT (α)

}
, 1 ≤ i ≤ k .



For a compact formulation, the following product mappings
are introduced

F1× · · · × Fk : [t0, tf ]× (Sn)k× RmP×n× RmE×n 7→ (Sn)k

G1× · · · × Gk : [t0, tf ]× (Sn)k 7→ Rk

along with the corresponding notations F , F1 × · · · × Fk

and G , G1 × · · · × Gk. Thus, the dynamic equations of
motion (29)-(31) can be rewritten as follows

d

dα
H(α) = F(α,H(α),KP (α),KE(α)) , H(tf ) (32)

d

dα
D(α) = G(α,H(α)) , D(tf ) (33)

where the terminal values H(tf ) = (Qf , 0, . . . , 0) and
D(tf ) = (0, . . . , 0).

Note that the product system uniquely determines H and
D once the admissible feedback gains KP and KE are spec-
ified. Hence, H and D are considered as H(·, KP , KE) and
D(·, KP , KE), respectively. The performance index in cost-
cumulant control can now be formulated in the admissible
feedback gains KP and KE .

Definition 3: Performance Index.
Fix k ∈ Z+ and µ = {µi ≥ 0}k

i=1 with µ1 > 0. Then for
given (t0, x0), ξP ∈ WP , and ξE ∈ WE , the performance
index φ0 : [t0, tf ]× (Sn)k ×Rk 7→ R+ of the cost-cumulant
control is defined as

φ0

(
t0,H(t0,KP ,KE),D(t0,KP ,KE)

)

,
k∑

i=1

µiκi(KP ,KE)

=
k∑

i=1

µi

[
xT

0Hi(t0,KP,KE)x0 +Di(t0,KP , KE)
]

(34)

where the parametric design freedom µi mutually chosen
by two non-cooperative teams represent different levels of
influence as they deem important to the overall cost distri-
bution of the multi-player pursuit-evasion game and solutions
{Hi(t0,KP ,KE) ≥ 0}k

i=1 and {Di(t0, KP , KE) ≥ 0}k
i=1

evaluated at α = t0 satisfy the equations (32)-(33).
For the given terminal data (tf ,Hf ,Df ), the classes
KP

tf ,Hf ,Df ;ξP ,ξE ;µ and KE
tf ,Hf ,Df ;ξP ,ξE ;µ of admissible feed-

back gains may be defined as follows.
Definition 4: Admissible Feedback Gain Strategies.

Let the compact subsets K
P ⊂ RmP×n and K

E ⊂ RmE×n

be the sets of allowable gain values. For given ξP ∈
WP , ξE ∈ WE , k ∈ Z+, and µ = {µi ≥ 0}k

i=1

with µ1 > 0, the sets of admissible control strategies
KP

tf ,Hf ,Df ;ξP ,ξE ;µ and KE
tf ,Hf ,Df ;ξP ,ξE ;µ are assumed to be

the classes of C([t0, tf ];RmP×n) and C([t0, tf ];RmE×n)
with values KP (·) ∈ K

P
and KE(·) ∈ K

E
for which

solutions to the dynamic equations of motion (32)-(33) exist
on the finite horizon [t0, tf ].
Then one may state the optimization problem for the zero-
sum stochastic differential game.

Definition 5: Optimization Problem.
Fix ξP ∈ WP , ξE ∈ WE , k ∈ Z+, and µ = {µi ≥ 0}k

i=1

with µ1 > 0. Then the optimization problem for multi-player
pursuit-evasion over [t0, tf ] is given by

min
KP (·)∈KP

tf ,Hf ,Df ;ξP ,ξE ;µ

max
KE(·)∈KE

tf ,Hf ,Df ;ξP ,ξE ;µ

φ0

(
t0,H(t0,KP , KE),D(t0,KP ,KE)

)
(35)

subject to the dynamic equations (32)-(33) for α ∈ [t0, tf ].
It is worth mentioning that the subject optimization is an

initial cost problem, in contrast with the more traditional
terminal cost class of investigations. One may address an
initial cost problem by introducing changes of variables
which convert it to a terminal cost problem. However, this
modifies the natural context of cost cumulants, which it is
preferable to retain. Instead, one may take a more direct
dynamic programming approach to the initial cost problem.
Such an approach is illustrative of the more general concept
of the principle of optimality, an idea tracing its roots back
to the 17th century.

As a tenet of transition from the principle of optimality, a
family of games based on different starting points is now of
concerned. Let’s begin by considering an interlude of time, ε
in mid-play. At its commencement the path has reached some
definitive point. Consider all possible (H,D) which may be
reached at the end of the interlude for all possible choices
of (KP ,KE). Suppose that for each endpoint, the game
beginning there has already been solved. Then the value
function V(ε,H,D) resulting from each choice of (KP ,KE)
is known, and they are to be so chosen as to render it
minimax. As the duration of the interlude approaches tf ,
this leads to a sufficient condition to Hamilton-Jacobi-Isaacs
(HJI) equation.

Definition 6: Playable Set.
Let the playable set Q be defined as follows

Q ,
{

(ε,Y,Z) ∈ [t0, tf ]× (Sn)k × Rk such that

KP
ε,Y,Z;ξP ,ξE ;µ ×KE

ε,Y,Z;ξP ,ξE ;µ 6= 0
}

.

The fundamental theorem of calculus and stochastic differ-
ential rules can be used to derive a saddle point.

Theorem 3: Existence of a Saddle Point.
Fix k ∈ Z+ and µ = {µi ≥ 0}k

i=1 with µ1 > 0. Then for
given (t0, x0), ξP ∈ WP and ξE ∈ WE , there exists a saddle
point (KP∗,KE∗) ∈ KP

tf ,Hf ,Df ;ξP ,ξE ;µ×KE
tf ,Hf ,Df ;ξP ,ξE ;µ

such that there holds

φ0

(
t0,H(t0,KP∗,KE),D(t0,KP∗,KE)

)

≤ φ0

(
t0,H(t0,KP∗,KE∗),D(t0,KP∗,KE∗)

)

≤ φ0

(
t0,H(t0,KP ,KE∗),D(t0, KP , KE∗)

)
.

Therefore, the existence of a saddle point yields both nec-
essary and sufficient conditions for the minimax problem to
be equivalent to the corresponding maximin problem.

Theorem 4: Differentiability of Value Function.
Let admissible feedback gains KP∗(α,H,D) and
KE∗(α,H,D) constitute a saddle point. Further, let
t0(ε,Y,Z) and (H(t0(ε,Y,Z); ε,Y),D(t0(ε,Y,Z); ε,Z))



be the initial time and initial states for the trajectories of

d

dα
H(α) = F(α,H,KP∗(α,H,D),KE∗(α,H,D)) ,

d

dα
D(α) = G(α,H) ,

with the terminal condition (ε,Y,Z). Then, the value
function V(ε,Y,Z) is differentiable at each point
at which t0(ε,Y,Z) and H(t0(ε,Y,Z); ε,Y) and
D(t0(ε,Y,Z); ε,Z) are differentiable with respect to
(ε,Y,Z).
Moreover, if the value function is continuously differentiable
then such a saddle point is unique.

Theorem 5: HJI Equation-Mayer Problem.
Let (ε,Y,Z) be any interior point of the playable set Q
at which the value function V(ε,Y,Z) is differentiable. If
there exist a saddle point (KP∗,KE∗) ∈ KP

ε,Y,Z;ξP ,ξE ;µ ×
KE

ε,Y,Z;ξP ,ξE ;µ, then the partial differential equation of the
pursuit-evasion differential games

0 = min
KP∈K

P
max

KE∈K
E

{
∂

∂ε
V(ε,Y,Z)

+
∂

∂ vec(Y)
V(ε,Y,Z) · vec(F(ε,Y,KP , KE))

+
∂

∂ vec(Z)
V(ε,Y,Z) · vec(G(ε,Y))

}
(36)

is satisfied together with

V(t0,H0,D0) = φ0(t0,H0,D0)

and vec(·) the vectorizing operator of enclosed entities.

IV. SADDLE-POINT STRATEGIES

The approach of obtaining a saddle-point solution requires
parametrization of the terminal time and states of the opti-
mization problem as (ε,Y,Z) rather than (tf ,Hf ,Df ). That
is, for ε ∈ [t0, tf ] and 1 ≤ i ≤ k, the states of the system
(32)-(33) defined on the interval [t0, ε] have the terminal
values denoted by H(ε) = Y and D(ε) = Z . Observe
that the cumulant-based performance index (34) is quadratic
affine in terms of arbitrarily fixed x0. This suggests a solution
to the HJI equation (36) may be sought in the form

W(ε,Y,Z)

= xT
0

k∑

i=1

µi(Yi + Ei(ε)) x0 +
k∑

i=1

µi(Zi + Ti(ε)) , (37)

where these parametric functions of time Ei ∈
C1([t0, tf ];Sn) and Ti ∈ C1([t0, tf ];R) are to be determined.

Theorem 6: Time Derivative of a Candidate Function.
Fix k ∈ Z+ and let (ε,Y,Z) be any interior point of the
reachable set Q at which the real-valued function (37) is
differentiable. Then, the time derivative of W(ε,Y,Z) is

found to be

d

dε
W(ε,Y,Z) =

k∑

i=1

µi

(
Gi(ε,Y) +

d

dε
Ti(ε)

)

+ xT
0

k∑

i=1

µi

(
Fi(ε,Y,KP ,KE) +

d

dε
Ei(ε)

)
x0 . (38)

The substitution of this hypothesized solution (37) into the
HJI equation (36) and making use of the result (38) yield

0 = min
KP∈K

P
max

KE∈K
E

{
∂

∂ε
W(ε,Y,Z)

+
∂

∂ vec(Y)
W(ε,Y,Z) · vec(Fi(ε,Y, KP , KE))

+
∂

∂ vec(Z)
W(ε,Y,Z) · vec(Gi(ε,Y))

}
,

= min
KP∈K

P
max

KE∈K
E

{
xT

0

(
k∑

i=1

µi
d

dε
Ei(ε)

)
x0+

k∑

i=1

µi
d

dε
Ti(ε)

+xT
0

(
k∑

i=1

µiFi(ε,Y,KP ,KE)

)
x0 +

k∑

i=1

µiGi(ε,Y)

}
.

(39)

It is important to observe that

k∑

i=1

µiFi(ε,Y,KP ,KE)

= − [
A(ε) + BP (ε)KP + BE(ε)KE

]T
k∑

i=1

µiYi

−
k∑

i=1

µiYi

[
A(ε) + BP (ε)KP + BE(ε)KE

]

− µ1Q(ε)− µ1K
PT RP (ε)KP + µ1K

ET RE(ε)KE

−
k∑

i=2

µi

i−1∑

j=1

2i!
j!(i− j)!

YjG(ε)WGT (ε)Yi−j ,

k∑

i=1

µiGi(ε,Y) = −
k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}
.

Differentiating the expression within the bracket of (39) with
respect to KP and KE yield the necessary conditions for an
extremum of the performance index (34) on [t0, ε],

−2BPT (ε)
k∑

i=1

µiYiM0 − 2µ1R
P (ε)KP M0 = 0 ,

−2BET (ε)
k∑

i=1

µiYiM0 + 2µ1R
E(ε)KEM0 = 0 .

Because M0 is an arbitrary rank-one matrix, it must be true

KP (ε,Y,Z) = −(RP )−1(ε)BPT (ε)
k∑

r=1

µ̂rYr , (40)

KE(ε,Y,Z) = (RE)−1(ε)BET (ε)
k∑

r=1

µ̂rYr , (41)



where µ̂r = µi/µ1 for µ1 > 0. Substituting the gain
expressions (40) and (41) into the right member of the HJI
equation (39) yields the value of the minimum

xT
0

[
k∑

i=1

µi
d

dε
Ei(ε)−AT (ε)

k∑

i=1

µiYi −
k∑

i=1

µiYiA(ε)

− µ1Q(ε) +
k∑

r=1

µ̂rYrB
P (ε)(RP )−1(ε)BPT (ε)

k∑

i=1

µiYi

+
k∑

i=1

µiYiB
P (ε)(RP )−1(ε)BPT (ε)

k∑
s=1

µ̂sYs

−
k∑

r=1

µ̂rYrB
E(ε)(RE)−1(ε)BET (ε)

k∑

i=1

µiYi

−
k∑

i=1

µiYiB
E(ε)(RE)−1(ε)BET (ε)

k∑
s=1

µ̂sYs

− µ1

k∑
r=1

µ̂rYrB
P (ε)(RP )−1(ε)BPT (ε)

k∑
s=1

µ̂sYs

+ µ1

k∑
r=1

µ̂rYrB
E(ε)(RE)−1(ε)BET (ε)

k∑
s=1

µ̂sYs

−
k∑

i=2

µi

i−1∑

j=1

2i!
j!(i− j)!

YjG(ε)WGT (ε)Yi−j

]
x0

+
k∑

i=1

µi
d

dε
Ti(ε)−

k∑

i=1

µiTr
{YiG(ε)WGT (ε)

}
. (42)

It is now necessary to exhibit time dependent functions
{Ei(·)}k

i=1 and {Ti(·)}k
i=1 which will render the left side

of (42) equal to zero for ε ∈ [t0, tf ], when {Yi}k
i=1

are evaluated along solution trajectories of the cumulant-
generating equations. Studying the expression (42) reveals
that Ei(·) and Ti(·) for 1 ≤ i ≤ k satisfying the backward-
in-time differential equations

d

dε
E1(ε) = AT (ε)H1(ε) +H1(ε)A(ε) + Q(ε)

−H1(ε)BP (ε)(RP )−1(ε)BPT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT (ε)H1(ε)

+H1(ε)BE(ε)(RE)−1(ε)BET (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET (ε)H1(ε)

+
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET (ε)
k∑

s=1

µ̂sHs(ε) ,

(43)

and, for 2 ≤ i ≤ k

d

dε
Ei(ε) = AT (ε)Hi(ε) +Hi(ε)A(ε)

−Hi(ε)BP (ε)(RP )−1(ε)BPT (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT (ε)Hi(ε)

+Hi(ε)BE(ε)(RE)−1(ε)BET (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET (ε)Hi(ε)

+
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (44)

d

dε
Ti(ε) = Tr

{Hi(ε)G(ε)WGT (ε)
}

, 1 ≤ i ≤ k , (45)

will work. Furthermore, at the boundary condition, it is
necessary to have W (t0,H0,D0) = φ0 (t0,H0,D0), or
equivalently

xT
0

k∑

i=1

µi(Hi0 + Ei(t0))x0 +
k∑

i=1

µi(Di0 + Ti(t0))

= xT
0

k∑

i=1

µiHi0x0 +
k∑

i=1

µiDi0 .

Thus, matching the boundary condition yields the corre-
sponding initial value conditions Ei(t0) = 0 and Ti(t0) = 0
for the equations (43)-(45). Applying the feedback gains
specified in (40) and (41) along the solution trajectories of
the equations (32)-(33), these equations become Riccati-type
equations

d

dε
H1(ε) = −AT (ε)H1(ε)−H1(ε)A(ε)−Q(ε)

+H1(ε)BP (ε)(RP )−1(ε)BPT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT (ε)H1(ε)

−H1(ε)BE(ε)(RE)−1(ε)BET (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET (ε)H1(ε)

−
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT(ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET(ε)
k∑

s=1

µ̂sHs(ε),

(46)



and, for 2 ≤ i ≤ k

d

dε
Hi(ε) = −AT (ε)Hi(ε)−Hi(ε)A(ε)

+Hi(ε)BP (ε)(RP )−1(ε)BPT (ε)
k∑

s=1

µ̂sHs(ε)

+
k∑

r=1

µ̂rHr(ε)BP (ε)(RP )−1(ε)BPT (ε)Hi(ε)

−Hi(ε)BE(ε)(RE)−1(ε)BET (ε)
k∑

s=1

µ̂sHs(ε)

−
k∑

r=1

µ̂rHr(ε)BE(ε)(RE)−1(ε)BET (ε)Hi(ε)

−
i−1∑

j=1

2i!
j!(i− j)!

Hj(ε)G(ε)WGT (ε)Hi−j(ε) , (47)

together, for 1 ≤ i ≤ k

d

dε
Di(ε) = −Tr

{Hi(ε)G(ε)WGT (ε)
}

(48)

where the terminal conditions H1(tf ) = Qf , Hi(tf ) = 0 for
2 ≤ i ≤ k and Di(tf ) = 0 for 1 ≤ i ≤ k. Thus, whenever
these equations (46)-(48) admit solutions {Hi(·)}k

i=1 and
{Di(·)}k

i=1, then the existence of {Ei(·)}k
i=1 and {Ti(·)}k

i=1

satisfying the equations (43)-(45) are assured. By comparing
equations (43)-(45) to those of (46)-(48), one may recognize
that these sets of equations are related to one another by

d

dε
Ei(ε) = − d

dε
Hi(ε) and

d

dε
Ti(ε) = − d

dε
Di(ε)

for 1 ≤ i ≤ k. Enforcing the initial value conditions of
Ei(t0) = 0 and Ti(t0) = 0 uniquely implies that

Ei(ε) = Hi(t0)−Hi(ε) and Ti(ε) = Di(t0)−Di(ε)

for all ε ∈ [t0, tf ] and yields a value function

W(ε,Y,Z) = V(ε,Y,Z)

= xT
0

k∑

i=1

µiHi(t0)x0 +
k∑

i=1

µiDi(t0) ,

for which the sufficient condition (36) of the verification
theorem is satisfied. Therefore, the feedback gains for pursuit
team P , (40) and evader team E, (41) optimizing the
performance index stated in (34) become optimal

KP∗(ε) = −(RP )−1(ε)BPT (ε)
k∑

r=1

µ̂rH∗r(ε) , (49)

KE∗(ε) = (RE)−1(ε)BET (ε)
k∑

r=1

µ̂rH∗r(ε) . (50)

Theorem 7: Strategies for Multi-Player Pursuit-Evasion.
Consider the multi-player pursuit-evasion game as described
by (14)-(15) where the pairs (A,BP ) and (A,BE) are
uniformly stabilizable. Fix ξP ∈ WP , ξE ∈ WE , k ∈ Z+,

and µ = {µi ≥ 0}k
i=1 with µ1 > 0. Then the saddle-point

solution is achieved by the non-inferior strategy gains

KP∗(α) = −(RP )−1(α)BPT (α)
k∑

r=1

µ̂rH∗r(α) , (51)

KE∗(α) = (RE)−1(α)BET (α)
k∑

r=1

µ̂rH∗r(α) , (52)

where additional parametric design freedom µ̂r mutually
chosen by rival teams represent different levels of influence
as they deem important to the global cost distribution and
{H∗r(α) ≥ 0}k

r=1 solve the coupled differential equations

d

dα
H∗1(α) =

− [
A(α) + BP (α)KP∗(α) + BE(α)BE∗(α)

]T H∗1(α)

−H∗1(α)
[
A(α) + BP (α)KP∗(α) + BE(α)BE∗(α)

]

−Q(α)−KP∗T (α)RP (α)KP∗(α)

+ KE∗T (α)RE(α)KE∗(α) , H∗1(tf ) = Qf (53)

and, for 2 ≤ r ≤ k with H∗r(tf ) = 0

d

dα
H∗r(α) =

− [
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]T H∗r(α)

−H∗r(α)
[
A(α) + BP (α)KP∗(α) + BE(α)KE∗(α)

]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗s(α)G(α)WGT (α)H∗r−s(α) , (54)

V. CONCLUSIONS

This paper dealt with a multi-player pursuit-evasion dif-
ferential game modeled in a stochastic environment for
realistic conditions. Matrix differential equations for generat-
ing statistics of the standard integral-quadratic performance-
measure used in this game were derived. A direct dynamic
programming approach was used to solve for saddle-point
solutions that can address both control strategy selection and
performance analysis aspects. Hopefully, these results will
make some new theoretical contributions and performance
analysis tools to stochastic differential game communities.
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